Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Encyclopedia of Cell Biology: Volume 1-6, Second Edition ; 1:930-941, 2022.
Article in English | Scopus | ID: covidwho-2325092

ABSTRACT

Coronaviruses such as SARS and SARS-CoV-2 have established themselves as a global health concern after causing an epidemic and a pandemic in the last twenty years. Understanding the life cycle of such viruses is critical to reveal their pathogenic potential. As one of the essential viral enzymes, SARS proteases are indispensable for the processing of viral polypeptides and for the replication of the virus. SARS-CoV and SARS-CoV-2 encode for 2 viral proteases: the main protease (3CLpro) and the papain-like protease (PLPro), which are conserved among different coronaviruses and are absent in humans. This review summarizes the existing literature on the structure and function of these proteases;highlighting the similarity and differences between the enzymes of SARS and SARS-CoV-2. It also discusses the development of inhibitors to target viral proteases. © 2023 Elsevier Inc. All rights reserved.

2.
Virology ; 582: 114-127, 2023 05.
Article in English | MEDLINE | ID: covidwho-2298993

ABSTRACT

Coronavirus infection induces a variety of cellular antiviral responses either dependent on or independent of type I interferons (IFNs). Our previous studies using Affymetrix microarray and transcriptomic analysis revealed the differential induction of three IFN-stimulated genes (ISGs), IRF1, ISG15 and ISG20, by gammacoronavirus infectious bronchitis virus (IBV) infection of IFN-deficient Vero cells and IFN-competent, p53-defcient H1299 cells, respectively. In this report, the induction kinetics and anti-IBV functions of these ISGs as well as mechanisms underlying their differential induction are characterized. The results confirmed that these three ISGs were indeed differentially induced in H1299 and Vero cells infected with IBV, significantly more upregulation of IRF1, ISG15 and ISG20 was elicited in IBV-infected Vero cells than that in H1299 cells. Induction of these ISGs was also detected in cells infected with human coronavirus-OC43 (HCoV-OC43) and porcine epidemic diarrhea virus (PEDV), respectively. Manipulation of their expression by overexpression, knockdown and/or knockout demonstrated that IRF1 played an active role in suppressing IBV replication, mainly through the activation of the IFN pathway. However, a minor, if any, role in inhibiting IBV replication was played by ISG15 and ISG20. Furthermore, p53, but not IRF1, was implicated in regulating the IBV infection-induced upregulation of ISG15 and ISG20. This study provides new information on the mechanisms underlying the induction of these ISGs and their contributions to the host cell antiviral response during IBV infection.


Subject(s)
Coronavirus Infections , Gammacoronavirus , Infectious bronchitis virus , Animals , Humans , Antiviral Agents/pharmacology , Chlorocebus aethiops , Coronavirus Infections/veterinary , Cytokines/genetics , Exoribonucleases , Infectious bronchitis virus/genetics , Swine , Tumor Suppressor Protein p53 , Ubiquitins , Vero Cells
3.
Methods in Molecular Biology ; 2591:269-282, 2023.
Article in English | Scopus | ID: covidwho-2244456

ABSTRACT

SARS-CoV-2 protease Nsp3 is a therapeutic target for developing anti-SARS-CoV-2 drugs. Nsp3 is a large multi-spanning membrane protein, and its characterization in vitro has been challenging. Here we describe an in vitro assay to characterize the biochemical activity of full-length Nsp3 isolated from cells. The assay can be used to evaluate Nsp3 inhibitors. © 2023, The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

4.
Semin Cell Dev Biol ; 132: 16-26, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2211427

ABSTRACT

Ubiquitin-like proteins (Ubls) share some features with ubiquitin (Ub) such as their globular 3D structure and the ability to attach covalently to other proteins. Interferon Stimulated Gene 15 (ISG15) is an abundant Ubl that similar to Ub, marks many hundreds of cellular proteins, altering their fate. In contrast to Ub, , ISG15 requires interferon (IFN) induction to conjugate efficiently to other proteins. Moreover, despite the multitude of E3 ligases for Ub-modified targets, a single E3 ligase termed HERC5 (in humans) is responsible for the bulk of ISG15 conjugation. Targets include both viral and cellular proteins spanning an array of cellular compartments and metabolic pathways. So far, no common structural or biochemical feature has been attributed to these diverse substrates, raising questions about how and why they are selected. Conjugation of ISG15 mitigates some viral and bacterial infections and is linked to a lower viral load pointing to the role of ISG15 in the cellular immune response. In an apparent attempt to evade the immune response, some viruses try to interfere with the ISG15 pathway. For example, deconjugation of ISG15 appears to be an approach taken by coronaviruses to interfere with ISG15 conjugates. Specifically, coronaviruses such as SARS-CoV, MERS-CoV, and SARS-CoV-2, encode papain-like proteases (PL1pro) that bear striking structural and catalytic similarities to the catalytic core domain of eukaryotic deubiquitinating enzymes of the Ubiquitin-Specific Protease (USP) sub-family. The cleavage specificity of these PLpro enzymes is for flexible polypeptides containing a consensus sequence (R/K)LXGG, enabling them to function on two seemingly unrelated categories of substrates: (i) the viral polyprotein 1 (PP1a, PP1ab) and (ii) Ub- or ISG15-conjugates. As a result, PLpro enzymes process the viral polyprotein 1 into an array of functional proteins for viral replication (termed non-structural proteins; NSPs), and it can remove Ub or ISG15 units from conjugates. However, by de-conjugating ISG15, the virus also creates free ISG15, which in turn may affect the immune response in two opposite pathways: free ISG15 negatively regulates IFN signaling in humans by binding non-catalytically to USP18, yet at the same time free ISG15 can be secreted from the cell and induce the IFN pathway of the neighboring cells. A deeper understanding of this protein-modification pathway and the mechanisms of the enzymes that counteract it will bring about effective clinical strategies related to viral and bacterial infections.


Subject(s)
COVID-19 , Interferons , Humans , Peptide Hydrolases/metabolism , SARS-CoV-2 , Ubiquitin/metabolism , Antiviral Agents , Polyproteins , Immunity , Cytokines/metabolism , Ubiquitins/genetics , Ubiquitin Thiolesterase
5.
Methods Mol Biol ; 2591: 171-188, 2023.
Article in English | MEDLINE | ID: covidwho-2103726

ABSTRACT

Both severe acute respiratory syndrome coronavirus 1 and 2 (SARS-CoV-1 and SARS-CoV-2) encode a papain-like protease (PLpro), which plays a vital role in viral propagation. PLpro accomplishes this function by processing the viral polyproteins essential for viral replication and removing the small proteins, ubiquitin and ISG15 from the host's key immune signaling proteins, thereby preventing the host's innate immune response. Although PLpro from both SARS-CoV-1 and SARS-CoV-2 are structurally highly similar (83% sequence identity), they exhibit functional variability. Hence, to further elucidate the mechanism and aid in drug discovery efforts, the biochemical and kinetic characterization of PLpro is needed. This chapter describes step-by-step experimental procedures for evaluating PLpro activity in vitro using activity-based probes (ABPs) along with fluorescence-based substrates. Herein we describe a step-by-step experimental procedure to assess the activity of PLpro in vitro using a suite of activity-based probes (ABPs) and fluorescent substrates and how they can be applied as fast and yet sensitive methods to calculate kinetic parameters.


Subject(s)
COVID-19 , Ubiquitin , Humans , Ubiquitin/metabolism , SARS-CoV-2/genetics , Coronavirus Papain-Like Proteases , Papain , Peptide Hydrolases/metabolism , Ubiquitins/metabolism , Cytokines/metabolism
6.
Angewandte Chemie ; 134(40), 2022.
Article in English | ProQuest Central | ID: covidwho-2047453

ABSTRACT

Ubiquitin (Ub)‐like protein ISG15 (interferon‐stimulated gene 15) regulates innate immunity and links with the evasion of host response by viruses such as SARS‐CoV‐2. Dissecting ISGylation pathways recently received increasing attention which can inform related disease interventions, but such studies necessitate the preparation and development of various ISG15 protein tools. Here, we find that the leader protease (Lbpro) encoded by foot‐and‐mouth disease virus can promote ligation reactions between recombinant ISG15 and synthetic glycyl compounds, generating protein tools such as ISG15‐propargylamide and ISG15‐rhodamine110, which are needed for cellular proteomic studies of deISGylases, and the screening and evaluation of inhibitors against SARS‐CoV‐2 papain‐like protease (PLpro). Furthermore, this strategy can be also used to load ISG15 onto the lysine of a synthetic peptide through an isopeptide bond, and prepare Ub and NEDD8 (ubiquitin‐like protein Nedd8) protein tools.

7.
Front Vet Sci ; 9: 978453, 2022.
Article in English | MEDLINE | ID: covidwho-2023030

ABSTRACT

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an emerging swine enteropathogenic coronavirus that causes severe diarrhea in neonatal piglets, leading to serious economic losses to the pig industries. At present, there are no effective control measures for SADS, making an urgent need to exploit effective antiviral therapies. Here, we confirmed that Aloe extract (Ae) can strongly inhibit SADS-CoV in Vero and IPI-FX cells in vitro. Furthermore, we detected that Emodin from Ae had anti-SADS-CoV activity in cells but did not impair SADS-CoV infectivity directly. The time-of-addition assay showed that Emodin inhibits SADS-CoV infection at the whole stages of the viral replication cycle. Notably, we found that Emodin can significantly reduce virus particles attaching to the cell surface and induce TLR3 (p < 0.001), IFN-λ3 (p < 0.01), and ISG15 (p < 0.01) expressions in IPI-FX cells, indicating that the anti-SADS-CoV activity of Emodin might be due to blocking viral attachment and the activation of TLR3-IFN-λ3-ISG15 signaling axis. These results suggest that Emodin has the potential value for the development of anti-SADS-CoV drugs.

8.
Angew Chem Int Ed Engl ; 61(40): e202206205, 2022 10 04.
Article in English | MEDLINE | ID: covidwho-1990419

ABSTRACT

Ubiquitin (Ub)-like protein ISG15 (interferon-stimulated gene 15) regulates innate immunity and links with the evasion of host response by viruses such as SARS-CoV-2. Dissecting ISGylation pathways recently received increasing attention which can inform related disease interventions, but such studies necessitate the preparation and development of various ISG15 protein tools. Here, we find that the leader protease (Lbpro ) encoded by foot-and-mouth disease virus can promote ligation reactions between recombinant ISG15 and synthetic glycyl compounds, generating protein tools such as ISG15-propargylamide and ISG15-rhodamine110, which are needed for cellular proteomic studies of deISGylases, and the screening and evaluation of inhibitors against SARS-CoV-2 papain-like protease (PLpro). Furthermore, this strategy can be also used to load ISG15 onto the lysine of a synthetic peptide through an isopeptide bond, and prepare Ub and NEDD8 (ubiquitin-like protein Nedd8) protein tools.


Subject(s)
COVID-19 , Peptide Hydrolases , Animals , Catalysis , Cytokines/metabolism , Interferons , Lysine , NEDD8 Protein , Peptide Hydrolases/metabolism , Proteomics , SARS-CoV-2 , Ubiquitins/chemistry
9.
Cytokine ; 158: 155997, 2022 10.
Article in English | MEDLINE | ID: covidwho-1982909

ABSTRACT

The recently discovered truncated, non-functional, ACE2 transcript (dACE2), but not the full-length ACE2 (f-lACE2), is induced by IFNs in differentiated airway cells. We measured expression of both ACE2 isoforms in SARS-CoV-2 positive and negative subjects, in relation to Interferon-stimulated genes. A significant activation of dACE2 transcript was found, in SARS-CoV-2 positive adults either hospitalized or not, showing a positive correlation with ISG15; f-lACE2 expression was weakly activated and not ISG-related. We confirmed a specific activation of dACE2 transcript in nasopharyngeal cells, related to the mucosal IFN response.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Adult , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents , Humans , Interferons/metabolism , Peptidyl-Dipeptidase A/metabolism , Protein Isoforms/genetics , SARS-CoV-2
10.
Curr Drug Targets ; 23(7): 686-691, 2022.
Article in English | MEDLINE | ID: covidwho-1745211

ABSTRACT

Interferon-simulated gene 15 (ISG15) belongs to the family of ubiquitin-like proteins. ISG15 acts as a cytokine and modifies proteins through ISGylation. This posttranslational modification has been associated with antiviral and immune response pathways. In addition, it is known that the genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes proteases critical for viral replication. Consequently, these proteases are also central in the progression of coronavirus disease 2019 (COVID-19). Interestingly, the protease SARS-CoV-2-PLpro removes ISG15 from ISGylated proteins such as IRF3 and MDA5, affecting immune and antiviral defense from the host. Here, the implications of ISG15, ISGylation, and generation of SARS-CoV-2-PLpro inhibitors in SARS-CoV-2 infection are discussed.


Subject(s)
COVID-19 , Cytokines , Ubiquitins , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cytokines/metabolism , Humans , Interferons , SARS-CoV-2 , Ubiquitins/metabolism
11.
Front Cell Dev Biol ; 9: 788410, 2021.
Article in English | MEDLINE | ID: covidwho-1572282

ABSTRACT

The interferon-stimulating gene 15 (ISG15) protein is a ubiquitin-like protein induced by interferons or pathogens. ISG15 can exist in free form or covalently bind to the target protein through an enzymatic cascade reaction, which is called ISGylation. ISGylation has been found to play an important role in the innate immune responses induced by type I interferon, and is, thus, critical for the defense of host cells against RNA, DNA, and retroviruses. Through covalent binding with the host and viral target proteins, ISG15 inhibits the release of viral particles, hinder viral replication, and regulates the incubation period of viruses, thereby exerting strong antiviral effects. The SARS-CoV-2 papain-like protease, a virus-encoded deubiquitinating enzyme, has demonstrated activity on both ubiquitin and ISG15 chain conjugations, thus playing a suppressive role against the host antiviral innate immune response. Here we review the recent research progress in understanding ISG15-type ubiquitin-like modifications, with an emphasis on the underlying molecular mechanisms. We provide comprehensive references for further studies on the role of ISG15 in antiviral immunity, which may enable development of new antiviral drugs.

12.
Cells ; 10(10)2021 09 26.
Article in English | MEDLINE | ID: covidwho-1438528

ABSTRACT

The coronavirus disease 2019 (COVID-19) is related to enhanced production of NETs, and autoimmune/autoinflammatory phenomena. We evaluated the proportion of low-density granulocytes (LDG) by flow cytometry, and their capacity to produce NETs was compared with that of conventional neutrophils. NETs and their protein cargo were quantified by confocal microscopy and ELISA. Antinuclear antibodies (ANA), anti-neutrophil cytoplasmic antibodies (ANCA) and the degradation capacity of NETs were addressed in serum. MILLIPLEX assay was used to assess the cytokine levels in macrophages' supernatant and serum. We found a higher proportion of LDG in severe and critical COVID-19 which correlated with severity and inflammatory markers. Severe/critical COVID-19 patients had higher plasmatic NE, LL-37 and HMGB1-DNA complexes, whilst ISG-15-DNA complexes were lower in severe patients. Sera from severe/critical COVID-19 patients had lower degradation capacity of NETs, which was reverted after adding hrDNase. Anti-NET antibodies were found in COVID-19, which correlated with ANA and ANCA positivity. NET stimuli enhanced the secretion of cytokines in macrophages. This study unveils the role of COVID-19 NETs as inducers of pro-inflammatory and autoimmune responses. The deficient degradation capacity of NETs may contribute to the accumulation of these structures and anti-NET antibodies are related to the presence of autoantibodies.


Subject(s)
Autoimmunity , COVID-19/blood , COVID-19/immunology , Extracellular Traps/immunology , Immunity, Humoral , Inflammation , Neutrophils/immunology , Antibodies, Antinuclear , Antimicrobial Cationic Peptides/blood , Autoantibodies/metabolism , Cross-Sectional Studies , Cytokines/metabolism , Cytokines/pharmacology , Flow Cytometry , Granulocytes/metabolism , HMGB1 Protein/blood , Healthy Volunteers , Humans , Microscopy, Confocal , Monocytes/cytology , Neutrophils/cytology , SARS-CoV-2 , Ubiquitins/pharmacology , Cathelicidins
13.
Cell Rep ; 36(13): 109754, 2021 09 28.
Article in English | MEDLINE | ID: covidwho-1401298

ABSTRACT

The SARS-CoV-2 papain-like protease (PLpro) is a target for antiviral drug development. It is essential for processing viral polyproteins for replication and functions in host immune evasion by cleaving ubiquitin (Ub) and ubiquitin-like protein (Ubl) conjugates. While highly conserved, SARS-CoV-2 and SARS-CoV PLpro have contrasting Ub/Ubl substrate preferences. Using a combination of structural analyses and functional assays, we identify a molecular sensor within the S1 Ub-binding site of PLpro that serves as a key determinant of substrate specificity. Variations within the S1 sensor specifically alter cleavage of Ub substrates but not of the Ubl interferon-stimulated gene 15 protein (ISG15). Significantly, a variant of concern associated with immune evasion carries a mutation in the S1 sensor that enhances PLpro activity on Ub substrates. Collectively, our data identify the S1 sensor region as a potential hotspot of variability that could alter host antiviral immune responses to newly emerging SARS-CoV-2 lineages.


Subject(s)
Coronavirus Papain-Like Proteases/metabolism , Coronavirus Papain-Like Proteases/ultrastructure , SARS-CoV-2/genetics , Amino Acid Sequence/genetics , Binding Sites/genetics , COVID-19/genetics , COVID-19/metabolism , Coronavirus Papain-Like Proteases/genetics , HEK293 Cells , Humans , Papain/chemistry , Papain/metabolism , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , Protein Binding/genetics , SARS-CoV-2/metabolism , Substrate Specificity/genetics , Ubiquitin/metabolism , Ubiquitins/metabolism , Viral Proteins/metabolism
14.
Microorganisms ; 9(1)2021 Jan 03.
Article in English | MEDLINE | ID: covidwho-1389447

ABSTRACT

The expression rate of SARS-CoV-2 entry genes, angiotensin-converting enzyme 2 (ACE2), the main viral receptor and the proteases, furin and transmembrane serine protease 2 (TMPRSS2) in cystic fibrosis (CF) individuals is poorly known. Hence, we examined their levels in upper respiratory samples of CF patients (n = 46) and healthy controls (n = 45). Moreover, we sought to understand the interplay of type I interferon (IFN-I) with ACE2, furin and TMPRSS2 by evaluating their gene expression with respect to ISG15, a well-known marker of IFN activation, in upper respiratory samples and after ex vivo IFNß exposure. Lower ACE2 levels and trends toward the reduction of furin and TMPRSS2 were found in CF patients compared with the healthy controls; decreased ACE2 amounts were also detected in CF individuals with pancreatic insufficiency and in those receiving inhaled antibiotics. Moreover, there was a strong positive correlation between ISG15 and ACE2 levels. However, after ex vivo IFNß stimulation of nasopharyngeal cells, the truncated isoform (dACE2), recently demonstrated as the IFN stimulated one with respect to the full-length isoform (flACE2), slightly augmented in cells from CF patients whereas in those from healthy donors, dACE2 levels showed variable levels of upregulation. An altered expression of SARS-COV-2 entry genes and a poor responsiveness of dACE2 to IFN-I stimulation might be crucial in the diffusion of SARS-CoV-2 infection in CF.

15.
Cell Rep ; 31(11): 107772, 2020 06 16.
Article in English | MEDLINE | ID: covidwho-1385222

ABSTRACT

ISG15 is a ubiquitin-like modifier that also functions extracellularly, signaling through the LFA-1 integrin to promote interferon (IFN)-γ release from natural killer (NK) and T cells. The signals that lead to the production of extracellular ISG15 and the relationship between its two core functions remain unclear. We show that both epithelial cells and lymphocytes can secrete ISG15, which then signals in either an autocrine or paracrine manner to LFA-1-expressing cells. Microbial pathogens and Toll-like receptor (TLR) agonists result in both IFN-ß-dependent and -independent secretion of ISG15, and residues required for ISG15 secretion are mapped. Intracellular ISGylation inhibits secretion, and viral effector proteins, influenza B NS1, and viral de-ISGylases, including SARS-CoV-2 PLpro, have opposing effects on secretion of ISG15. These results establish extracellular ISG15 as a cytokine-like protein that bridges early innate and IFN-γ-dependent immune responses, and indicate that pathogens have evolved to differentially inhibit the intracellular and extracellular functions of ISG15.


Subject(s)
Cytokines/metabolism , Signal Transduction , Ubiquitins/metabolism , Animals , HEK293 Cells , Humans , Influenza, Human/immunology , Influenza, Human/metabolism , Interferon-gamma/immunology , Interferon-gamma/metabolism , Jurkat Cells , Mice , Mice, Inbred C57BL , Mycobacterium Infections/immunology , Mycobacterium Infections/metabolism , Pathogen-Associated Molecular Pattern Molecules , Typhoid Fever/immunology , Typhoid Fever/metabolism , Viral Nonstructural Proteins/metabolism
16.
Viruses ; 13(6)2021 06 09.
Article in English | MEDLINE | ID: covidwho-1282639

ABSTRACT

Mammalian cells have developed an elaborate network of immunoproteins that serve to identify and combat viral pathogens. Interferon-stimulated gene 15 (ISG15) is a 15.2 kDa tandem ubiquitin-like protein (UBL) that is used by specific E1-E2-E3 ubiquitin cascade enzymes to interfere with the activity of viral proteins. Recent biochemical studies have demonstrated how the E3 ligase HECT and RCC1-containing protein 5 (HERC5) regulates ISG15 signaling in response to hepatitis C (HCV), influenza-A (IAV), human immunodeficiency virus (HIV), SARS-CoV-2 and other viral infections. Taken together, the potent antiviral activity displayed by HERC5 and ISG15 make them promising drug targets for the development of novel antiviral therapeutics that can augment the host antiviral response. In this review, we examine the emerging role of ISG15 in antiviral immunity with a particular focus on how HERC5 orchestrates the specific and timely ISGylation of viral proteins in response to infection.


Subject(s)
Cytokines/genetics , Interferons/immunology , Intracellular Signaling Peptides and Proteins/genetics , Ubiquitins/genetics , Virus Diseases/immunology , Animals , COVID-19/immunology , Cytokines/immunology , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/immunology , Mice , SARS-CoV-2/immunology , Ubiquitins/immunology , Viral Proteins/genetics , Viral Proteins/metabolism
17.
Phytother Res ; 35(8): 4246-4257, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1162957

ABSTRACT

Coronavirus disease 2019 (COVID-19) triggered by a new viral pathogen, named severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2), is now a global health emergency. This debilitating viral pandemic not only paralyzed the normal daily life of the global community but also spread rapidly via global travel. To date there are no effective vaccines or specific treatments against this highly contagious virus; therefore, there is an urgent need to advocate novel prophylactic or therapeutic interventions for COVID-19. This brief opinion critically discusses the potential of Silymarin, a flavonolignan with diverse pharmacological activity having antiinflammatory, antioxidant, antiplatelet, and antiviral properties, with versatile immune-cytokine regulatory functions, that able to bind with transmembrane protease serine 2 (TMPRSS2) and induce endogenous antiviral cytokine interferon-stimulated gene 15, for the management of COVID-19. Silymarin inhibits the expression of host cell surface receptor TMPRSS2 with a docking binding energy corresponding to -1,350.61 kcal/mol and a full fitness score of -8.11. The binding affinity of silymarin with an impressive virtual score exhibits significant potential to interfere with SARS-CoV-2 replication. We propose in-depth pre-clinical and clinical review studies of silymarin for the development of anti-COVID-19 lead, based on its clinical manifestations of COVID-19 and multifaceted bioactivities.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Silymarin , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/prevention & control , Humans , Pandemics , SARS-CoV-2/drug effects , Silymarin/pharmacology , Silymarin/therapeutic use
18.
J Genet Eng Biotechnol ; 19(1): 52, 2021 Apr 02.
Article in English | MEDLINE | ID: covidwho-1166952

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the etiologic agent of coronavirus disease 2019 (COVID-19), is rapidly acquiring new mutations. Analysis of these mutations is necessary for gaining knowledge regarding different aspects of therapeutic development. Previously, we have reported a Sanger method-based genome sequence of a viral isolate named SARS-CoV-2 NIB-1, circulating in Bangladesh. The genome has four novel non-synonymous mutations in V121D, V843F, A889V, and G1691C positions. RESULTS: Using different computational tools, we have found V121D substitution has the potential to destabilize the non-structural protein-1 (NSP-1). NSP-1 inactivates the type-1 interferon-induced antiviral system. Hence, this mutant could be a basis of attenuated vaccines against SARS-CoV-2. V843F, A889V, and G1691C are all located in nonstructural protein-3 (NSP-3). G1691C can decrease the flexibility of the protein. V843F and A889V might change the binding pattern and efficacy of SARS-CoV-2 papain-like protease (PLPro) inhibitor GRL0617. V843F substitution in PLPro was the most prevalent mutation in the clinical samples. This mutation showed a reduced affinity for interferon-stimulated gene-15 protein (ISG-15) and might have an impact on innate immunity and viral spread. However, V843F+A889V double mutant exhibited the same binding affinity as wild type PLPro. A possible reason behind this phenomenon can be that V843F is a conserved residue of PLPro which damaged the protease structure, but A889V, a less conserved residue, presumably neutralized that damage. CONCLUSIONS: Mutants of NSP-1 could provide attenuated vaccines against coronavirus. Also, these mutations of PLPro might be targeted to develop better anti-SARS therapeutics. We hope our study will help to get better insides during the development of attenuated vaccine and PLPro inhibitors.

19.
Viruses ; 13(2)2021 01 26.
Article in English | MEDLINE | ID: covidwho-1050647

ABSTRACT

Viral dysregulation or suppression of innate immune responses is a key determinant of virus-induced pathogenesis. Important sensors for the detection of virus infection are the RIG-I-like receptors (RLRs), which, in turn, are antagonized by many RNA viruses and DNA viruses. Among the different escape strategies are viral mechanisms to dysregulate the post-translational modifications (PTMs) that play pivotal roles in RLR regulation. In this review, we present the current knowledge of immune evasion by viral pathogens that manipulate ubiquitin- or ISG15-dependent mechanisms of RLR activation. Key viral strategies to evade RLR signaling include direct targeting of ubiquitin E3 ligases, active deubiquitination using viral deubiquitinating enzymes (DUBs), and the upregulation of cellular DUBs that regulate RLR signaling. Additionally, we summarize emerging new evidence that shows that enzymes of certain coronaviruses such as SARS-CoV-2, the causative agent of the current COVID-19 pandemic, actively deISGylate key molecules in the RLR pathway to escape type I interferon (IFN)-mediated antiviral responses. Finally, we discuss the possibility of targeting virally-encoded proteins that manipulate ubiquitin- or ISG15-mediated innate immune responses for the development of new antivirals and vaccines.


Subject(s)
Cytokines/metabolism , DEAD Box Protein 58/metabolism , Immune Evasion , Ubiquitin/metabolism , Ubiquitins/metabolism , Viruses/immunology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Humans , Immunity, Innate , Receptors, Immunologic , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Signal Transduction , Virus Diseases/immunology , Virus Diseases/metabolism , Virus Diseases/virology , Viruses/metabolism
20.
Gene Rep ; 21: 100956, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1023579

ABSTRACT

Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) infection is a leading cause of pneumonia and death. The aim of this investigation is to identify the key genes in SARS-CoV-2 infection and uncover their potential functions. We downloaded the expression profiling by high throughput sequencing of GSE152075 from the Gene Expression Omnibus database. Normalization of the data from primary SARS-CoV-2 infected samples and negative control samples in the database was conducted using R software. Then, joint analysis of the data was performed. Pathway and Gene ontology (GO) enrichment analyses were performed, and the protein-protein interaction (PPI) network, target gene - miRNA regulatory network, target gene - TF regulatory network of the differentially expressed genes (DEGs) were constructed using Cytoscape software. Identification of diagnostic biomarkers was conducted using receiver operating characteristic (ROC) curve analysis. 994 DEGs (496 up regulated and 498 down regulated genes) were identified. Pathway and GO enrichment analysis showed up and down regulated genes mainly enriched in the NOD-like receptor signaling pathway, Ribosome, response to external biotic stimulus and viral transcription in SARS-CoV-2 infection. Down and up regulated genes were selected to establish the PPI network, modules, target gene - miRNA regulatory network, target gene - TF regulatory network revealed that these genes were involved in adaptive immune system, fluid shear stress and atherosclerosis, influenza A and protein processing in endoplasmic reticulum. In total, ten genes (CBL, ISG15, NEDD4, PML, REL, CTNNB1, ERBB2, JUN, RPS8 and STUB1) were identified as good diagnostic biomarkers. In conclusion, the identified DEGs, hub genes and target genes contribute to the understanding of the molecular mechanisms underlying the advancement of SARS-CoV-2 infection and they may be used as diagnostic and molecular targets for the treatment of patients with SARS-CoV-2 infection in the future.

SELECTION OF CITATIONS
SEARCH DETAIL